Lexicographic Product of Extendable Graphs
نویسندگان
چکیده
Lexicographic product G◦H of two graphs G and H has vertex set V (G)×V (H) and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H). If every matching of G of size k can be extended to a perfect matching in G, then G is called k-extendable. In this paper, we study matching extendability in lexicographic product of graphs. The main result is that the lexicographic product of an m-extendable graph and an n-extendable graph is (m + 1)(n + 1)-extendable. In fact, we prove a slightly stronger result.
منابع مشابه
Further Results on Betweenness Centrality of Graphs
Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملOn Lexicographic Products of Two Fuzzy Graphs
Abstract. In this paper, lexicographic products of two fuzzy graphs namely, lexicographic min-product and lexicographic max-product which are analogous to the concept lexicographic product in crisp graph theory are defined. It is illustrated that the operations lexicographic products are not commutative. The connected, effective and complete properties of the operations lexicographic products a...
متن کاملOn the Strong Product of a k-Extendable and an l-Extendable Graph
Let G1 ⊗ G2 be the strong product of a k-extendable graph G1 and an l-extendable graph G2, and X an arbitrary set of vertices of G1⊗G2 with cardinality 2[(k + 1)(l + 1)/2]. We show that G1 ⊗ G2 − X contains a perfect matching. It implies that G1 ⊗ G2 is [(k + 1)(l + 1)/2]-extendable, whereas the Cartesian product of G1 and G2 is only (k+l+1)extendable. As in the case of the Cartesian product, t...
متن کاملSome results on the lexicographic product of vertex-transitive graphs
Many large graphs can be constructed from existing smaller graphs by using graph operations, for example, the Cartesian product and the lexicographic product. Many properties of such large graphs are closely related to those of the corresponding smaller ones. In this short note, we give some properties of the lexicographic products of vertextransitive and of edge-transitive graphs. In particula...
متن کامل